A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra

نویسندگان

  • Neil Molino
  • Robert Bridson
  • Joseph Teran
  • Ronald Fedkiw
چکیده

Motivated by Lagrangian simulation of elastic deformation, we propose a new tetrahedral mesh generation algorithm that produces both high quality elements and a mesh that is well conditioned for subsequent large deformations. We use a signed distance function defined on a Cartesian grid in order to represent the object geometry. After tiling space with a uniform lattice based on crystallography, we use the signed distance function or other user defined criteria to guide a red green mesh subdivision algorithm that results in a candidate mesh with the appropriate level of detail. Then, we carefully select the final topology so that the connectivity is suitable for large deformation and the mesh approximates the desired shape. Finally, we compress the mesh to tightly fit the object boundary using either masses and springs, the finite element method or an optimization approach to relax the positions of the nodes. The resulting mesh is well suited for simulation since it is highly structured, has robust topological connectivity in the face of large deformations, and is readily refined if deemed necessary during subsequent simulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft-Tissue Simulation Using the Radial Elements Method

This paper introduces the Radial Elements Method – REM for the simulation of deformable objects. The REM was conceived for the real time, dynamic simulation of deformable objects. The method uses a combination of static and dynamic approaches to simulate deformations and dynamics of highly deformable objects. The real time performance of the method and its intrinsic properties of volume conserv...

متن کامل

Towards tetrahedral meshing with decoupled element and boundary constraints

In tetrahedral mesh generation, the constraints imposed by adaptive element size, good tetrahedral quality (shape measured by some local metric), and material boundaries are often in conflict. Attempts to satisfy these conditions simultaneously frustrate many conventional approaches. We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of p...

متن کامل

A Simplified Approach for Animation of Deformable Objects

We present a simplified approach for animation of geometrically complex deformable objects represented as tetrahedral meshes. Our prototype system detects and responds to collisions of objects subject to elastic deformations of variable stiffness. The proposed approach combines several techniques, namely, collision detection using a spatial hashed grid [6], consistent penetration depth using pr...

متن کامل

Adaptive and Unstructured Mesh Cleaving

We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoid...

متن کامل

Deformable Surfaces for Feature Based Indirect Volume Rendering

In this paper we present an indirect volume visualization method, based on the deformable surface model, which is a three dimensional extension of the snake segmentation method. In contrast to classical indirect volume visualization methods, this model is not based on iso-values but on boundary information. Physically speaking it simulates a combination of a thin plate and a rubber skin, that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003